Detecting perfect powers in essentially linear time

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting perfect powers in essentially linear time

This paper (1) gives complete details of an algorithm to compute approximate kth roots; (2) uses this in an algorithm that, given an integer n > 1, either writes n as a perfect power or proves that n is not a perfect power; (3) proves, using Loxton’s theorem on multiple linear forms in logarithms, that this perfect-power decomposition algorithm runs in time (log n)1+o(1).

متن کامل

Detecting perfect powers by factoring into coprimes

This paper presents an algorithm that, given an integer n > 1, finds the largest integer k such that n is a kth power. A previous algorithm by the first author took time b1+o(1) where b = lg n; more precisely, time b exp(O( √ lg b lg lg b)); conjecturally, time b(lg b)O(1). The new algorithm takes time b(lg b)O(1). It relies on relatively complicated subroutines—specifically, on the first autho...

متن کامل

Factoring into coprimes in essentially linear time

Let S be a finite set of positive integers. A “coprime base for S” means a set P of positive integers such that (1) each element of P is coprime to every other element of P and (2) each element of S is a product of powers of elements of P. There is a natural coprime base for S. This paper introduces an algorithm that computes the natural coprime base for S in essentially linear time. The best p...

متن کامل

Detecting lacunary perfect powers and computing their roots

We consider the problem of determining whether a lacunary (also called a sparse or super-sparse) polynomial f is a perfect power, that is, f = h for some other polynomial h and r ∈ N, and of finding h and r should they exist. We show how to determine if f is a perfect power in time polynomial in the number of non-zero terms of f , and in terms of log deg f , i.e., polynomial in the size of the ...

متن کامل

Perfect Matchings and Perfect Powers

In the last decade there have been many results about special families of graphs whose number of perfect matchings is given by perfect or near perfect powers (N. Elkies et al., J. Algebraic Combin. 1 (1992), 111– 132; B.-Y. Yang, Ph.D. thesis, Department of Mathematics, MIT, Cambridge, MA, 1991; J. Propp, New Perspectives in Geometric Combinatorics, Cambridge University Press, 1999). In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1998

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-98-00952-1